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Within the cqntext of the cold dark matter model, current obser- 

vations suggest that inflationary models which generate a tilted primor- 

dial power spectrum with negligible gravitational waves provide the most 

promising mechanism for explaining large scale clustering. The general 

form of the inflationary potential which produces such a spectrum is a 

hyperbolic function and is interpreted physically as a bulk viscous stress 

contribution to the energy-momentum of a perfect baryotropic fluid. This 

is equivalent to expanding the equation of state as a truncated Taylor se- 

ries. Particle physics models which lead to such a potential are discussed. 
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1 Introduction 

The origin and evolution of large scale structure is one of the most important problems 
in cosmology today. It is widely accepted that the growth of small fluctuations by 
gravitational instability leads to structure formation. The inflationary paradigm, 
whilst providing possible solutions to a number of other problems associated with the 
hot big bang mode!, also produces a Gaussian, adiabatic fluctuation spectrum which 
is nearly, though not exactly, scale-invariant (Guth 1981; Albrecht & Steinhardt 1982; 
Linde 1982; Olive 1990; Liddle & Lyth 1993). Based on this prediction, the standard 
Cold Dark hiatter (CDM) mode! of galaxy formation employs the flat, Harrison- 
Zel’dovich spectrum as an input parameter (Efstathiou 1990). The CDM mode! 
successfully accounts for small (5 10/i-’ Mpc) and intermediate (10/r-’ Mpc - lOOh” 
Mpc) scale observations, if one introduces a bias in the distribution of luminous to 
dark matter (Davies et al 1985).’ 

However, standard CDM has come under severe pressure from a number of recent 
observations (for a detailed review see Liddle & Lyth 1993). In particular, the APM 
angular galaxy-galaxy correlation function (Maddox et al 1991) and the IRAS QDOT 
redshift survey (Efstathiou et al 1991) indicate that there exists more large scale 
structure than that predicted by CDM. One possible resolution to this problem is to 
consider tilted CDM models. Here the primordial power spectrum is assumed to be of 
the form P(k) 0: Az(k)k o( k”, where Ic is the comoving wavenumber of the Fourier 
expansion of the perturbation, As is the amplitude of the quantum fluctuation when 
it crosses the Hubble radius during the matter- or-radiation-dominated eras and n 
is the power spectrum. Other possibilities involve the addition of a cosmological 
constant or a hot dark matter component (Liddle & Lyth 1993). 

Inflation also produces a spectrum of gravitational wave (tensor) perturbations, 
whose amplitude may or may not be comparable to that of the scalar fluctuations. 
In this paper we shall concentrate on models which lead to tilted power spectra with 
a negligible gravitational wave component. There exists a wide range of observa- 
tional constraints on the tilt arising from large angle (0 2 3”) microwave background 
anisotropies (Smoot et al 1992), galaxy clustering (Maddox et al 1990; Efstathiou et 
al 1990), peculiar velocity flows (Bertschinger & Dekel 1989; Dekel, Bertschinger & 
Faber 1990; Bertschinger et al 1990), high redshift quasars (Efstathiou & Rees 1988) 
and the red shift of structure formation. When combined together these observations 
strongly limit the allowed value of n. It has been shown that tilted CDM cannot fit all 
of the data simultaneously (Adams et al 1993; Liddle & Lyth 1993). For inflationary 
models in which gravitational wave production is negligible, a lower limit of n > 0.7 is 
partially consistent with the COBE 2-sigma upper limit and the bulk flow data, if the 
clustering and pairwise velocity data are ignored. In models where the gravitational 
wave contribution to the microwave background anisotropy isimportant,; however, 
this limit is strengthened to R > 0.84. This is clearly inconsistent with the APM 

% 
‘The current due of the expansion rate is & = lOOh km s-l Mpc-‘, where 0.4 5 h < 1. 
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However, analytical solutions have only been found for a limited number of specific 
examples, such as the special case p/p = constant (Barrow 1990). For an arbitrary 
equation of state which satisfies the dominant energy condition (p -p 2 0), it proves 
convenient to redefine the sum and difference of p and p in terms of the new functions 

@Ep+p w 4(t) = J’dttJpofp(t’) 
2v=p-pp. 

We may then rewrite Eqs. (1) and (2) as 

H’+P+v)-.$ 
dV 

&+3H4+*=0, 

(6) 

(7) 

which are the Einstein field equations for a minimally coupled scalar field, 4. Specify- 
ing the equation of state now becomes a question of choosing an appropriate functional 
form for the potential V(4), and vice-versa. For example, an exponential potential is 
equivalent to p/p = constant when Ic = 0. 

Recent advances in the treatment of Eqs. (6) and (7) have been made by viewing 
the scalar field as the effective dynamical variable of the system (Muslimov 1990; 
Salopek & Bond 1990; Salopek & Bond 1991; Lidsey 1991; Lidsey 1993).- From the 
definition p = $2/2 + V, the time dependence can be eliminated by rewriting the 
scalar field equation (7) as 

p’ = -3H4, J#O> (8) 

where a prime denotes differentiation with respect to 4. This is consistent if 4 does 
not oscillate (i.e. 4 does not pass through zero). It follows that 6H2 = -p’X’/X, 
where X(&J) G e’(4), and the Friedmann‘equation becomes 

p’X’ + 2pX = 6k. 

The potential can be found immediately from the expression 

(9) 

V(4) = p(4) - ro2 
18 H*(4) (10) 

once the forms of p(4) and X(4) are known. 
When k = 6 3H* = p, and these field equations take the particularly simple form 

2H’a’ = -Ha, 2H’ = -4, : (11). 

thereby allowing the general solution, a(@), to be expressed in terms of quadratures 
with respect to 6 (Salopek 9t Bond 1991; Lidsey 1993). The expression for the 
potential reduces to an Hamilton-Jacobi differential equation in H(d) of the form 

: V(4) = 3+(4 - 2(H’)*. ’ : : : (12) 
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Scalar Gravitational Waves Gravitational Waves 
Spectrum Important Negligible 

Small e large e small 
Tilt 26 n. ‘7 1’71 small 

Significant e large c small 
Tilt 1171 large 171 large 

Table 1 - The table of correspondences illustrating the connection between tilt and the magni- 
tude of the energy and friction parameters. The description ‘large’ implies significantly larger than 
zero (but still less than unity) and ‘small’ implies the parameter is very close to zero. 

Inflation proceeds in the region of parameter space for which E < 1 and the coasting 
solution, or Milne universe, corresponds to E = 1 (i.e 2y = z). It is interesting to note 
that the friction parameter does not directly determine whether inflation occurs. The 
‘slow-roll’ approximation is valid when {E, 1171) < 1. 

One may also write the (scale-dependent) spectral indices of the scalar and tensor 
fluctuations in terms of these two quantities. It is easy to show that 

n _ 1 ~ d W%(k)1 
dlnk =2(2zII:.) 

RG ; W&k)1 _ 
dlnk 

2~. 
C.-l’ 

.- (4 
(20) 

where * indicates that E and n should be evaluated when a particular scale first crosses 
the Hubble radius. The flat Harrison-Zel’dovich spectrum is equivalent to n = 1. 

It follows from the definitions of As and AG that 

A”-JZJ -- 6 
As m 

(21) 

It is often stated that inflation leads to a Harrison-Zel’dovich scalar spectrum with a 
negligible gravitational wave contribution. However such a conclusion followabecause 
the slow-roll approximation is assumed a ptiori. Eq. (21) implies that the gravity 
wave amplitude can be comparable to.As if e is sufficiently large. There exists a table 
of correspondences which summarizes the four possibilities (Barrow & Liddle 1993). 

In the following section we shall employ this framework to derive the form of the 
inflaton potential. 
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and 

6; (5) lanh ({T@)]’ (30) 

for the exponential and hyperbolic cases respectively. If cosmological scales crossed 
the Hubble radius when 141 < 1, the amplitude of tensor perturbations is exponen- 
tially suppressed in the latter example. 

Since Eq. (24) is an exact solution, it is valid for all values of @. In particular, for 
sufficiently small 4 the Taylor expansion 

H(4) = X [l - (9) $2 + O(&)] z &!p (31) 

will also lead to a constant spectral index. This implies that a power spectrum with 
n = constant < 1 will arise from any function of H(4) which is identical to Eq. (31) 
in the small + approximation. It is well known that deviations from scale invariance, 
without significant gravitational wave production, are possible whenever the potential 
resembles an inverted harmonic oscillator (Steinhardt & Turner 1984). The above 
calculation provides further insight in the sense that such a result follows because the 
inverted oscillator resembles the hyperbolic secant function to lowest order. Eq. (31) 
is very useful because it directly relates the effective imaginary mass of the field to 
the scalar spectral index. 

These results are summarized pictorially in Figures (la) and (lb), which are rep 
resentations of the class of solutions (23) in the I --y plane. (z and y are defined in 
Eq. (18)). In figure (la) the coasting solution y = x@is shown as the line A4 and 
the strong energy condition is violated to the right of this line. The x-&is represents 
the de Sitter solution, H = constant, and the origin is Minkowski space, which itself 
may be viewed as de Sitter space with an infinite radius of curvature (Hawking & 
Ellis 1973). The dashed lines represent solutions of constant n when C = 0. In these 
models z is a measure of the energy density of the universe and decreases as time 
increases. The trajectories of these constant n universes are indicated by the arrows 
and they all asymptotically approach Minkowski space at t + +cu.* 

Figure 1 

Figure (lb) illustrates the trajectories for finite values of C < 0 and n = 0.7. This 
class of universe begins in a de Sitter phase at t = -co and evolves towards the C = 0 
asymptote at t-= +oo in such a way that the scalar spectral index remains constant 
at all times. The magnitude of C determines the amplitude of the scalar quantum 
fluctuations but not the scale dependence. 

Having found the form of the potential required, it is now necessary to consider 
the pliysics which may lead to such a model. * 

< ‘In reality the shape of the potential must change at some point (2,~) to allow for an exit from 
inflation. : 
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where the constant of integration is expressed in terms of a~ and {cy, y} # 0. When 
/3 = 0, p 0: a+ as expected. Unfortunately the Friedmann equation (9) cannot be 
solved analytically when k = fl, but has the exact solution 

(36) 

(37) 

when I;- = 0. The dominant energy condition is violated when fi < 0, so this case-is 
not considered further. The expressions for H(d), a(@) and V(4) follow from Eqs. 
(11) and (12) as 

1/i-a 
[sech(w&)l’/” 

0 

0 

u3‘7-l 

44) = a0 7 Isinh(w4)12’3e’ 

u- 
[sech(w&)]*‘” (1 - (r/2)tanh*(w@))-. 

(38) 

These may be verified by differentiation. It should be emphasized that these solutions 
are exact and tie ‘slow-roll’ approximations, such as 141 << HI&[ and c$* << V, have 
been made. These~parametric solutions are plotted schen&ically in Figure (2). 

Figure 2 

For completeness, we include the well known solutions for p = 0, which lead to 
the exponential potential 

V(d) 0; exp 
(0 

374 (4) 

and power Ia; expansion a(t) 0: t2j3y. 

Hence, a bulk viscosity contribution to the baryotropic equation of state can be 
modelled as akself-interacting scalar field with potential (40) when k = 0. The inclu- 
sion of bulk Viscosity alters the structure of the potential away from an exponential 
form in the neighbourhood of I#[ z 0. This is illustrated in Fig. (2a). Near the origin, 
we find that the equation of state (34) can be adequately described as an inverted 
harmonic oscillator. The exponential potentials are recovered in the asymptotic limit 1 
as )@I 2 co, because~ the Viscous effects decay faster than the perfect fluid contribu: 
tion at large 141. The general advantage of rewriting Eq. (3) in terms of a scalar field 
is that the qualitative history of the universe is easily determined by considering the 
evolution of the scalar field along its interaction potential. Here, the field is initially 
placed at C$ = 0, which corresponds to a de Sitter expansipn with H = (r/P)‘12”/&+ I 

- 
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0 of Eq. (34) plays the role of ICI in determining the amplitude of the fluctuations, 
whereas CL determines the tilt of the spectrum. 

When {a,?} are not related by Eq. (46) the tilt is not exactly scale invariant, 
but r~ z constant is an excellent approximation if wldl < 1. For standard reheating, 
scales of astrophysical interest first crossed the Hubble radius approximately 50 e- 
foldings before the end of inflation. Defining the value of the field at this point as 
$50, we find from Eq. (43) that 

sinh*(w&,e) = e-307N50 
(47) 

for y > 213, where Nse x 50. Hence, if y is not too close to y = 2/3, w++so < I is 
valid and it is consistent to expand Eq. (38) to lowest order. It follows fro Eq. (31) 
that 

n = 1 - 3ay 

and n 2 0.7 leads to the constraint 

0-y 5 0.1 

(48) 

(4% 

B. Quantum creation of fundam+d strings 

Turok (1988) has considered the quantum production of infinitely thin Witten 
strings on super-horizon size scales (Green, Schwarz & Witten 1988). He suggests 
that a deflationary expansion follows naturally from a quasi de Sitter phase in the 
early universe. It was further shown that the quantum creation of these strings after 
compactification to four dimensions is equivalent to the equation of state (34) when 
o = 1 (Turok 1988). The parameter p depends on the fundamental string tension and 
the fractal dimension of the string. Moreover, a string distribution may be modelled 
in terms of a perfect fluid (32), where 2/3 5 7.2 1. The limits correspond to long 
strings with negligible velocity and a highly convoluted, relativistic string distribution 
respectively. 

Therefore, the parametric solutions (38)-(40) d es&be the evolution of the flat 
Friedmann universe when dominated by fundamental strings created on super-horizon 
scales. As emphasized by Barrow (1988) this model is fragile in the sense that the 
de Sitter phase is replaced by an initial singularity if other matter components or 
anisotropies a& included, and one might therefore view this model as unnatural. 
However, it is clear from constraint (49) that y < 0.1 is required for consistency with 
observation if o = 1 and this further undermines the.attractiveness of this scenario. 
The model gives far too much power on large scales. On the other hand, if extra 
physics allows o to be significantly smaller (o < 0.15), the model is not necessarily 
rules out. 

C. Nz = 2 supergravity in s+ dimensions 
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does provide a good fit to the data: then this would justify a more detailed study of 
the models discussed in section 5. 

A number of simplifying assumptions were made. In particular, the expressions 
(13) and (14) for the scalar and tensor amplitudes are strictly only valid in the slow 
roll regime, {E, 171} < I, whereas Eq. (19) implies that a tilt away from the Harrison- 
Zel’dovich spectrum requires 0 < 1~1 < 1, approximately. However, it has been shown 
that the corrections away from slow-roll are not important near a local maximum, 
and although they slightly alter the amplitude of the fluctuations in the exponential 
regime, they do not change the spectral index (Stewart & Lyth 1993). 

The physical interpretation of the potential in terms of a bulk viscosity is only 
valid in the spatially flat FRW cosmology. However, this paper has investigated the 
power spectra of such models and it is the last 60 e-foldings of inflationary expansion 
which are important for large-scale structure (Kolb & Turner 1990). In most chaotic 
scenarios the density parameter is very close to unity by this stage. 

Furthermore,-since all scales probed by large-scale structure correspond to a small 
(zz 9) number of e-foldings, it is reasonable to assume that the parameter y is constant 
during this interval. These results may therefore have further applications in models 
where the polytropic index is a function of cosmic time. 

Finally we note that Eq. (34) with y = 1 and p < 0 is the equation of state for 
a polytropic star, s$ecial cases of which include white dwarfs (a = 5/3) and neutron 
stars (a = 4/3) (Weinberg 1973). If the solution to Eq. (9) could be found for 
k = +l, the techniques described here could be relevant for stellar structure. 
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